Tracking Points While Rolling Without Slipping

Anthony Wang

12 January 2024

§1 Rolling Without Slipping

Definition 1.1. Given an object¹ R and a fixed curve γ initially tangent to it, we say that R rolls without slipping on γ if R moves² such that some point on the boundary of R is always tangent to γ and when any point on R is this tangency point, it is stationary.

Notably, we make no distinction to any "point" that the object rotates about.

§2 Tracking a Marked Point

Let's see some implications of this definition to tracking a marked point on an object that is rolling without slipping.

Proposition 2.1

Mark a point P on the object, and suppose that it moves on a path Γ_P . Furthermore, suppose that the object is tangent to γ at T. Then, PT is normal to Γ_P .

Figure 1: Marked point P moving along path Γ_P

Proof. Let P(t) denote the position of P at time t. Let T(t) denote the position of T at time t. We consider both P and T to move with the object.

¹We will represent objects as the interiors of smooth, simple, closed, planar curves

²i.e. moves rigidly preserving orientation. You can think about this as a path through the space of rototranslations starting at the identity.

Suppose the object is tangent to γ at T at the time $t = t_0$. By definition, we have $T'(t_0) = 0$. Now note that, $P'(t_0)$ is a tangent vector to Γ_P at P (at time $t = t_0$). In addition,

$$P'(t_0) \cdot (T(t_0) - P(t_0)) = -\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \left[(T(t) - P(t)) \cdot (T(t) - P(t)) \right] \Big|_{t=t_0}$$
$$= -\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|T(t) - P(t)\|^2 \Big|_{t=t_0}.$$

But since the object moves rigidly, ||T(t) - P(t)|| is a constant, so $P'(t_0) \cdot (T(t_0) - P(t_0)) = 0$, as desired.

Furthermore, since ||T(t) - P(t)|| is does not depend on t, and T(t) is momentarily stationary, we should be able to model the movement of P when the time is near t as following the circle centered at T(t) passing through P(t). Unfortunately, this is not exactly true (e.g. though they are tangent, the curvatures of said circle and Γ_P are not always equal at P).

However, if we let s(t) denote the arc length traversed by P on Γ_P from time 0 to time t, and let $\theta(t)$ denote the angle rotated by the object from time 0 to time t (e.g. by marking a fixed line on the object, then tracking the angle the x-axis makes with it), we have

Theorem 2.2 (Arc Length of Marked Points) Suppose r(t) is the distance from P(t) to the tangency point of the object with γ . Then

$$r = \frac{\mathrm{d}s}{\mathrm{d}\theta}$$

considering everything as a function of t.

In other words, this states that if the object rotates by an infinitesimal angle of $d\theta$, then a point P that is r away from the tangency point of the object with γ will move by $r d\theta$.

Proof of the Theorem. This proof is a bit computational. We will show that, using notation from 2.1, at time $t = t_0$

$$\|T(t_0) - P(t_0)\| = \frac{\mathrm{d}s}{\mathrm{d}\theta} \bigg|_{t=t_0}$$

Let r be the **constant** equal to $||T(t_0) - P(t_0)||$, and let \hat{i} be the unit vector in the positive x direction. Finally, define

$$\hat{n}(t) := \frac{1}{r}(T(t) - P(t)).$$

It's easy to see that $\cos^{-1}(\hat{n}(t) \cdot \hat{i})$ is the angle that the line *PT* makes with the *x*-axis at time *t*, so it is off from $\theta(t)$ by a constant³. Thus,

$$\frac{\mathrm{d}\theta}{\mathrm{d}s} = \frac{\mathrm{d}\cos^{-1}(\hat{n}\cdot\hat{i})}{\mathrm{d}s} = -\frac{1}{\sqrt{1-(\hat{n}\cdot\hat{i})^2}} \cdot \frac{\mathrm{d}(\hat{n}\cdot\hat{i})}{\mathrm{d}s}$$

³Or off from $-\theta(t)$ by a constant. It's iffy because we ideally want θ to be directed, but our dot product can only detect undirected angles. We can simply pretend all rotations are $\ll \frac{1}{2}\tau$, and that $\theta(t)$ is always defined so that $\frac{ds}{d\theta}$ is positive.

We can check that

$$\frac{\mathrm{d}(\hat{n}\cdot\hat{\imath})}{\mathrm{d}s} = \left(\hat{n}'(t)\cdot\hat{\imath}\right)\frac{\mathrm{d}t}{\mathrm{d}s} = -\left(\frac{P'(t)}{r}\cdot\hat{\imath}\right)\frac{\mathrm{d}t}{\mathrm{d}s} = -\frac{1}{r}\left(\frac{\mathrm{d}P}{\mathrm{d}s}\cdot\hat{\imath}\right).$$

But note that $\frac{dP}{ds}\Big|_{t=t_0}$ is the unit tangent vector to γ_P at $P(t_0)$, so by Proposition 2.1, it and \hat{n} form an orthonormal basis of $\mathbb{R}^{2/4}$. It follows that

$$(\hat{n}(t_0)\cdot\hat{i})^2 + \left(\frac{\mathrm{d}P}{\mathrm{d}s}\Big|_{t=t_0}\cdot\hat{i}\right)^2 = \|\hat{i}\|^2 = 1.$$

Therefore,

as desired.

$$\left. \frac{\mathrm{d}\theta}{\mathrm{d}s} \right|_{t=t_0} = \frac{1}{r(t_0)}$$

§3 Example Problems

Problem 3.1 (Physics). Suppose a circle with radius r rolls without slipping on a line such that its center moves with velocity v and the entire circle rotates about its center with an angular velocity of ω . Then $v = r\omega$.

Proof. Track the position of the center. Note that it moves on a line at constant velocity and is always a distance r from the tangency point. Therefore, by Theorem 2.2,

$$v = \frac{\mathrm{d}s}{\mathrm{d}t} = \frac{r\mathrm{d}\theta}{\mathrm{d}t} = r\omega.$$

Problem 3.2 (Folklore). Roll a coin around the circumference of another (fixed) coin of equal radius. How many times does the moving coin rotate?

Proof. Suppose the shared radius if r. Again, track the position of the center of the rolling object. Note that it moves on a circle with radius 2r concentric with the fixed coin. Therefore, by Theorem 2.2,

$$\Delta \theta = \int \mathrm{d}\theta = \int \frac{1}{r} \,\mathrm{d}s = \frac{1}{r} \Delta S = \frac{1}{r} \cdot \tau \cdot 2r = 2\tau,$$

so the coin has rotated twice.

Problem 3.3 (Delaunay). An ellipse with semimajor axis a rolls without slipping along the x-axis for one complete turn. Find the length of curve traced out by one focus F.

Surprisingly (or unsurprisingly), this is independent of the eccentricity!

Proof. By Theorem 2.2,

$$S = \int \mathrm{d}s = \int_0^\tau r \,\mathrm{d}\theta.$$

But by symmetry, for any $\phi \in [0, \frac{1}{2}\tau)$, the marked point on the ellipse tangent to the *x*-axis when $\theta = \phi$ (i.e. $T(t_1)$ for $\theta(t_1) = \phi$) is the reflection over the center of the ellipse of the marked point on the ellipse tangent to the *x*-axis when $\theta = \phi + \frac{1}{2}\tau$. In other words,

⁴In fact, these are the tangent and normal unit vectors of the Frenet—Serret frame!

the moments in which the ellipse is tangent to the x-axis at diametrically opposite points are a half turn away.

But the sum of the distances from two diametrically opposite points to a fixed focus F is simply 2a since the two foci and the two diametrically opposite points form a parallelogram. Therefore,

$$2S = \int_0^\tau 2a \,\mathrm{d}\theta = 2a\tau.$$

It follows that curve has length $a\tau$.