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§1 Rolling Without Slipping

Definition 1.1. Given an object1 R and a fixed curve γ initially tangent to it, we say
that R rolls without slipping on γ if R moves2 such that some point on the boundary of
R is always tangent to γ and when any point on R is this tangency point, it is
stationary.

Notably, we make no distinction to any “point” that the object rotates about.

§2 Tracking a Marked Point

Let’s see some implications of this definition to tracking a marked point on an object
that is rolling without slipping.

Proposition 2.1

Mark a point P on the object, and suppose that it moves on a path ΓP . Furthermore,
suppose that the object is tangent to γ at T . Then, PT is normal to ΓP .

γ

•
P

ΓP

•
T

Figure 1: Marked point P moving along path ΓP

Proof. Let P (t) denote the position of P at time t. Let T (t) denote the position of T at
time t. We consider both P and T to move with the object.

1We will represent objects as the interiors of smooth, simple, closed, planar curves
2i.e. moves rigidly preserving orientation. You can think about this as a path through the space of
rototranslations starting at the identity.
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Suppose the object is tangent to γ at T at the time t = t0. By definition, we have
T ′(t0) = 0. Now note that, P ′(t0) is a tangent vector to ΓP at P (at time t = t0). In
addition,

P ′(t0) · (T (t0)− P (t0)) = −1

2

d

dt
[(T (t)− P (t)) · (T (t)− P (t))]

∣∣∣∣
t=t0

= −1

2

d

dt
∥T (t)− P (t)∥2

∣∣∣∣
t=t0

.

But since the object moves rigidly, ∥T (t)−P (t)∥ is a constant, so P ′(t0)·(T (t0)−P (t0)) = 0,
as desired.

Furthermore, since ∥T (t) − P (t)∥ is does not depend on t, and T (t) is momentarily
stationary, we should be able to model the movement of P when the time is near t as
following the circle centered at T (t) passing through P (t). Unfortunately, this is not
exactly true (e.g. though they are tangent, the curvatures of said circle and ΓP are not
always equal at P ).
However, if we let s(t) denote the arc length traversed by P on ΓP from time 0 to

time t, and let θ(t) denote the angle rotated by the object from time 0 to time t (e.g. by
marking a fixed line on the object, then tracking the angle the x-axis makes with it), we
have

Theorem 2.2 (Arc Length of Marked Points)

Suppose r(t) is the distance from P (t) to the tangency point of the object with γ.
Then

r =
ds

dθ
,

considering everything as a function of t.

In other words, this states that if the object rotates by an infinitesimal angle of dθ,
then a point P that is r away from the tangency point of the object with γ will move by
r dθ.

Proof of the Theorem. This proof is a bit computational. We will show that, using
notation from 2.1, at time t = t0

∥T (t0)− P (t0)∥ =
ds

dθ

∣∣∣∣∣
t=t0

.

Let r be the constant equal to ∥T (t0) − P (t0)∥, and let ı̂ be the unit vector in the
positive x direction. Finally, define

n̂(t) :=
1

r
(T (t)− P (t)).

It’s easy to see that cos−1(n̂(t) · ı̂) is the angle that the line PT makes with the x-axis at
time t, so it is off from θ(t) by a constant3. Thus,

dθ

ds
=

d cos−1(n̂ · ı̂)
ds

= − 1√
1− (n̂ · ı̂)2

· d(n̂ · ı̂)
ds

.

3Or off from −θ(t) by a constant. It’s iffy because we ideally want θ to be directed, but our dot product
can only detect undirected angles. We can simply pretend all rotations are ≪ 1

2
τ , and that θ(t) is

always defined so that ds
dθ

is positive.
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We can check that

d(n̂ · ı̂)
ds

=
(
n̂′(t) · ·̂ı

) dt
ds

= −
(
P ′(t)

r
· ı̂
)

dt

ds
= −1

r

(
dP

ds
· ı̂
)
.

But note that dP
ds

∣∣
t=t0

is the unit tangent vector to γP at P (t0), so by Proposition 2.1, it

and n̂ form an orthonormal basis of R2 4. It follows that

(n̂(t0) · ı̂)2 +

(
dP

ds

∣∣∣∣
t=t0

· ı̂

)2

= ∥ı̂∥2 = 1.

Therefore,

dθ

ds

∣∣∣∣∣
t=t0

=
1

r(t0)
,

as desired.

§3 Example Problems

Problem 3.1 (Physics). Suppose a circle with radius r rolls without slipping on a line
such that its center moves with velocity v and the entire circle rotates about its center
with an angular velocity of ω. Then v = rω.

Proof. Track the position of the center. Note that it moves on a line at constant velocity
and is always a distance r from the tangency point. Therefore, by Theorem 2.2,

v =
ds

dt
=

rdθ

dt
= rω.

Problem 3.2 (Folklore). Roll a coin around the circumference of another (fixed) coin of
equal radius. How many times does the moving coin rotate?

Proof. Suppose the shared radius if r. Again, track the position of the center of the
rolling object. Note that it moves on a circle with radius 2r concentric with the fixed
coin. Therefore, by Theorem 2.2,

∆θ =

∫
dθ =

∫
1

r
ds =

1

r
∆S =

1

r
· τ · 2r = 2τ,

so the coin has rotated twice.

Problem 3.3 (Delaunay). An ellipse with semimajor axis a rolls without slipping along
the x-axis for one complete turn. Find the length of curve traced out by one focus F .

Surprisingly (or unsurprisingly), this is independent of the eccentricity!

Proof. By Theorem 2.2,

S =

∫
ds =

∫ τ

0
r dθ.

But by symmetry, for any ϕ ∈ [0, 12τ), the marked point on the ellipse tangent to the
x-axis when θ = ϕ (i.e. T (t1) for θ(t1) = ϕ) is the reflection over the center of the ellipse
of the marked point on the ellipse tangent to the x-axis when θ = ϕ+ 1

2τ . In other words,

4In fact, these are the tangent and normal unit vectors of the Frenet—Serret frame!
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the moments in which the ellipse is tangent to the x-axis at diametrically opposite points
are a half turn away.
But the sum of the distances from two diametrically opposite points to a fixed focus

F is simply 2a since the two foci and the two diametrically opposite points form a
parallelogram. Therefore,

2S =

∫ τ

0
2a dθ = 2aτ.

It follows that curve has length aτ .
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